Pages

Ads 468x60px

Sabtu, 02 Mei 2015

MESIN STIRLING SEDERHANA (APLIKASI HUKUM TERMODINAMIKA)


VIDEO KERJA MESIN 4 TAK (MESIN 4 LANGKAH)


VIDEO KERJA MESIN 2 TAK (MESIN 2 LANGKAH)


PRINSIP KERJA MESIN 4 TAK (MESIN 4 LANGKAH)

mesin 2 tak dan 4 tak 1

Mesin 4 tak itu mesin yang melunasi 4 siklus mesin bakar dengan melakukan 2 putaran kruk as/crankshaft. Mesin ini berputar 2 kali atau 720 derajat untuk melakukan 4 siklus, sehingga 1 putaran kruk as/crankshaft (360 derajat) melakukan 2 siklus. Dimana, mesin ini kurang responsif dibandingkan mesin 2 tak tetapi mesin ini lebih effisien. Mesin ini lebih ramah lingkungan karena mesin ini hanya meminum bensin saja, tidak ada oli samping. Mesin ini mengeluarkan tenaga relatif di putaran/RPM lebih rendah dibandingkan mesin 2 tak, dan tenaga yang dikeluarkan lebih rendah juga.
Mesin ini menggunakan klep/valve yang digerakan oleh noken as yang tidak dipakai oleh mesin 2 tak, sehingga semua siklus yang harus dilakukan lebih sempurna. Pada mesin motor, oli mesin 4 tak menjadi 1 untuk melumasi keseluruhan mesin dan transmisi pada mobil tetap terpisah karena saluran oli mesin dan transmisi terpisah.
Mari kita bahas lebih dalam tentang siklusnya mesin 4 tak.

mesin 2 tak dan 4 tak 2
Langkah ke 1 
Piston bergerak dari TMA ke TMB, posisi katup masuk terbuka dan katup keluar tertutup, mengakibatkan udara (mesin diesel) atau gas (sebagian besar mesin bensin) terhisap masuk ke dalam ruang bakar. Proses udara atau gas sebelum masuk ke ruang bakar dapat dilihat pada sistem pemasukkan.
Langkah ke 2 
Piston bergerak dari TMB ke TMA, posisi katup masuk dan keluar tertutup, mengakibatkan udara atau gas dalam ruang bakar terkompresi. Beberapa saat sebelum piston sampai pada posisi TMA, waktu penyalaan (timing ignition) terjadi (pada mesin bensin berupa nyala busi sedangkan pada mesin diesel berupa semprotan (suntikan) bahan bakar).
Langkah ke 3 
Gas yang terbakar dalam ruang bakar akan meningkatkan tekanan dalam ruang bakar, mengakibatkan piston terdorong dari TMA ke TMB. Langkah ini adalah proses yang akan menghasilkan tenaga.
Langkah ke 4
Piston bergerak dari TMB ke TMA, Posisi katup masuk terutup dan katup keluar terbuka, mendorong sisa gas pembakaran menuju ke katup keluar yang sedang terbuka untuk diteruskan ke lubang pembuangan.
Kesimpulannya mari kita lihat dalam tabel dibawah ini.

PERBEDAAN 2 TAK DAN 4 TAK
2 TAK
4 TAK
a. Dalam 1 siklus pembakaran hanya membutuhkan 1 putaran mesin a. dalam 1 siklus pembakaran membutuhkan 2 putaran mesin
b. memakai membrane sebagai pengganti klep/valve b. menggunakan klep/valve
c. tidak menggunakan noken as/camshaft c. menggunakan noken as/camshaft
d. memiliki kompresi primer dan sekunder d. hanya memiliki kompresi primer
e. lebih responsif / akselerasi bagus f. kurang responsif / akselerasi kurang dari pada mesin 2 tak
f. menggunakan oli samping yang tercampur dengan bensin untuk pelumasan kruk as / crankshaft g. hanya menggunakan oli dan tidak tercampur oleh bensin untuk pelumasan kruk as / crankshaft




Sekarang teman-teman sudah taukan gimana mesin 2 tak dan mesin 4 tak, dan perbedaan dari masing-masing mesin.

PRINSIP KERJA MESIN 2 TAK (MESIN 2 LANGKAH)

Kembali lagi dengan fastnlow, disini kita akan memberi ilmu tentang perbedaan mesin 2 tak dan 4 tak. Teman-teman sering dengar kan 2 tak dan 4 tak. Mungkin beberapa dari teman-teman sedikit bingung gimana sih 2 tak dan 4 tak, apa bedanya.

Mesin 2 Tak

Untitled

Pertama-tama, sebelum membahas lebih dalam tentang 2 tak dan 4 tak, dalam mesin itu terdapat 4 siklus yaitu siklus hisap/intake, siklus kompresi/compression, siklus ledak/power dan siklus buang/exhaust. Kita bakal membahas 2 terlebih dahulu. Dalam mesin 2 tak, 1 kali putaran kruk as/crankshaft (360 derajat) terdapat 4 siklus, jadi setengah putaran (180 derajat) melakukan 2 siklus. Dimana, pada mesin 2 tak tidak memakai klep/valve dan noken as/camshaft seperti di mesin 4 tak, sebagai gantinya mesin 2 tak memakai membran yang berada setelah karburator.
Selain itu, karena mesin 2 tak dalam 1 putaran kruk as/crankshaft melaksanakan 4 siklus, mesin 2 tak ini lebih responsif dan akselerasinya bagus. Akan tetapi, mesin ini mengeluarkan tenaga yang besar pada saat putaran/RPM tinggi sehingga membuat mesin ini meminum bahan bakar yang lumayan banyak, akan tetapi mesin ini menghasilkan tenaga yang lebih besar dibandingkan mesin 4 tak. Minuman mesin ini tak hanya bensin, tetapi mesin ini minta bensin tersebut dioplos dengan oli khusus yang biasa disebut oli samping untuk sekalian melumasi bagian dalam mesin. Jadi oli mesin hanya melumasi bagian transmisi. Itu lah kenapa mesin 2 tak fogging atau berasap knalpotnya, karena membakar oli samping.
Mesin 2 tak cenderung lebih kecil dan ringan dibandingkan mesin 4 tak, sehingga rasio berat terhadap tenaga (power to weight ratio) mesin dua tak lebih baik dibandingkan mesin empat tak. Itu sedikit tentang mesin 2 tak, mari kita buka lebih dalam bagaimana siklus 2 tak.

mesin 2 tak dan 4 tak

Langkah ke 1
Piston bergerak dari TMA ke TMB.
  1. Saat bergerak dari TMA ke TMB, piston akan menekan ruang bilas yang berada di bawahnya. Semakin jauh piston meninggalkan TMA menuju TMB akan semakin meningkat pula tekanan di ruang bilas.
  2. Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.
  3. Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
  4. Pada saat ring piston melewati lubang pemasukan, gas yang tertekan di dalam ruang bilas akan terpompa masuk ke dalam ruang bakar, sekaligus mendorong keluar gas yang ada di dalam ruang bakar menuju lubang pembuangan.
  5. Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas menuju ke dalam ruang bakar.
Langkah ke 2
Piston bergerak dari TMB ke TMA.
  1. Saat bergerak dari TMB ke TMA, piston akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi.
  2. Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak di dalam ruang bakar.
  3. Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
  4. Beberapa saat sebelum piston sampai di TMA, busi akan menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi tidak terjadi saat piston sampai ke TMA, melainkan terjadi sebelumnya. Ini dimaksudkan agar puncak tekanan akibat pembakaran dalam ruang bakar bisa terjadi saat piston mulai bergerak dari TMA ke TMB, karena proses pembakaran membutuhkan waktu untuk bisa membuat gas terbakar dengan sempurna oleh nyala api busi.
Teman-teman sudah kenalkan mesin 2 tak tu bagaimana, sekarang kita lanjut kenalan dengan mesin 4 tak yang sekarang sudah menjadi mesin mainstream yang banyak dipakai di kendaraan beroda.

source: http://fastnlow.net

Prinsip Kerja AC (Air Conditioner)

Secara garis besar prinsip kerja air conditioner adalah sebagai berikut:
1. Udara di dalam ruangan dihisap oleh kipas sentrifugal yang ada dalam evaporator dan udara bersentuhan dengan pipa coil yang berisi cairan refrigerant. Dalam hal ini refrigerant akan menyerap panas udara sehingga udara menjadi dingin dan refrigerant akan menguap dan dikumpulkan dalam penampung uap.

2. Tekanan uap yang berasal dari evaporator disirkulasikan menuju kondensor, selama proses kompresi berlangsung, temperatur dan tekanan uap refrigerant menjadi naik dan ditekan masuk ke dalam kondensor.

3. Untuk menurunkan tekanan cairan refrigerant yang bertekanan tinggi digunakan katup ekspansi untuk mengatur laju aliran refrigerant yang masuk dalam evaporator.

4. Pada saat udara keluar dari condensor udara menjadi panas. Uap refrigerant memberikan panas kepada udara pendingin dalam condensor menjadi embun pada pipa kapiler. Dalam mengeluarkan panas pada condensor, dibantu oleh kipas propeller.

5. Pada sirkulasi udara dingin terus-menerus dalam ruangan, maka perlu adanya thermostat untuk mengatur suhu dalam ruangan atau sesuai dengan keinginan.

6. Udara dalam ruang menjadi lebih dingin dibanding diluar ruangan sebab udara di dalam ruangan dihisap oleh sentrifugal yang terdapat pada evaporator kemudian terjadi udara bersentuhan dengan pipa/coill evaporator yang didalamnya terdapat gas pendingin (freon). Di sini terjadi perpindahan panas sehingga suhu udara dalam ruangan relatif dingin dari sebelumnya.

7. Suhu di luar ruangan lebih panas dibanding di dalam ruangan, sebab udara yang di dalam ruangan yang dihisap oleh kipas sentrifugal dan bersentuhan dengan evaporator, serta dibantu dengan komponen AC lainnya, kemudian udara dalam ruangan dikeluarkan oleh kipas udara kondensor. Dalam hal ini udara di luar ruangan dapat dihisap oleh kipas sentrifugal dan masuknya udara melalui kisi-kisi yang terdapat pada AC.

8. Gas refrigerant bersuhu tinggi saat akhir kompresi di condensor dengan mudah dicairkan dengan udara pendingin pada sistem air cooled atau uap refrigerant menyerap panas udara pendingin dalam condensor sehingga mengembun dan menjadi cairan di luar pipa evaporator.

9. Karena air atau udara pendingin menyerap panas dari refrigerant, maka air atau udara tersebut menjadi panas pada waktu keluar dari kondensor. Uap refrigerant yang sudah menjadi cair ini, kemudian dialirkan ke dalam pipa evaporator melalui katup ekspansi. Kejadian ini akan berulang kembali seperti di atas.

     Alat pada AC itu terdiri dari pompa compressor, evaporator, penukar panas, dan katup pemuaian dan prinsip kerja siklus pendinginan udara
     Dan sebagai cairan yang bersifat sebagai penghantar dari kalor yang terdapat pada udara adalah freon (diantaranya CCl2F2).
     Pompa dijalankan oleh motor listrik pada kompressor sehingga menarik uap freon yang keluar dari pembeku, memampatkannya (menaikkan tekanan) dan meneruskannya ke penukar pasa pada tekanan tinggi. Sekarang suhu uap freon menjadi lebih besar dari pada suhu udara di sekitar penukar panas, sehingga uap freon akan melepaskan kalornya ke udara sekitarnya dan uap freon mengembun menjadi cair. Bukti dari pelepasan kalor ke udara sekitarnya adanya tangan anda merasa panas ketika mendekatkan tangan ke sirip-sirip penukar panas pada bagian belakang AC. Freon cair yang keluar dari kondensor menuju ke katup pemuaian. Disini, freon cair memuai dan kelajuan pemuaiannya diatur oleh katup pemuaian. Akibat pemuaian, freon cair akan menyerap kalor dari udara yang ada di dalam AC, sehingga udara tersebut mendingin, sedangkan freon cair menguap. Uap freon yang keluar dari pembeku kemudian ditarik oleh pompa kompressor untuk mengulangi siklus berikutnya.
      Proses tersebut diatas berjalan berulang-ulang sehingga menjadi suatu siklus yang disebut siklus pendinginan pada udara yang berfungsi mengambil kalor dari udara dan membebaskan kalor ini ke tempat lain semisal di luar ruangan.
     Untuk cara kerjanya sendiri, pada saat AC pertama kali dinyalakan melalui remote, di ruangan yang sepi anda akan mendengar 1 kali bunyi “tek”. Bunyi tersebut menandakan bahwa kompressor mulai bekerja, memompa gas freon dari unit outdoor ke unit evaporator di Indoor untuk kemudian disembur angin oleh kipas ke dalam ruangan. Kemudian komputer di unit Indoor AC akan memberitahukan sensor termometer yang disebut thermostat di unit Indoor agar suhu ruangan tersebut dapat sama dengan suhu yang tertera di remote AC.
     Apabila contoh suhu remote disetel di 24 derajat, dan suhu ruangan sudah mencapai 24 derajat maka akan lagi terdengar bunyi “tek” lagi dimana kompressor AC akan mati dan AC di ruangan hanya akan menyemburkan angin saja karena gas freon tidak lagi dipompa dari unit outdoor ke unit indoor. Pada kondisi ini pemakaian listrik akan sangat kecil karena praktis listrik yang dibutuhkan hanya untuk kipas atau fan, thermostat, dan lampu-lampu pada Indoor AC.
    Kemudian pada saat suhu ruangan naik menjadi 25.1 (dua puluh lima koma satu) derajat, kompressor akan kembali menyala dimana anda akan mendengar lagi bunyi “tek”. Hal ini akan terjadi berulang-ulang selama AC dinyalakan.
     Kondisi kompressor AC yang menyala dan mati ini hanya dapat terjadi pada saat suhu remote tercapai. Oleh sebab itu, sebaiknya anda tidak menyetel suhu remote AC di 16 derajat. Karena ruangan anda tidak akan mencapai suhu 16 derajat.
     Ada baiknya agar anda selalu memasang suhu remote di minimal 22-23 derajat, dimana kondisi ruangan di suhu ini masih ada kemungkinan tercapai pada dini hari atau subuh sekitar pukul 03.00 atau 04.00. Hal ini akan berdampak langsung pada tagihan listrik anda per bulan. semakin sering kompressor AC dapat beristirahat, semakin hemat jugalah pemakaian listrik di rumah anda.

SIKLUS DIESEL


Siklus Diesel Ideal
Diesel Cycle : The Ideal Cycle for Compression-Ignition Engines

             Siklus Diesel adalah siklus ideal untuk mesin torak pengapian-kompresi yang pertama kali dinyatakan oleh Rudolph Diesel tahun 1890. Prinsip kerjanya sama halnya dengan mesin torak pengapian-nyala, yang dinyatakan oleh Nikolaus A. Otto tahun 1876, hanya perbedaan utamanya dalam hal metode inisiasi pembakarannya. Pada mesin torak pengapian-nyala (disebut juga mesin bensin) campuran udara-bahan bakar dikompresi ke temperatur di bawah temperatur pembakaran-sendiri (auto-ignition) dari bahan bakarnya, kemudian proses pembakarannya diinisiasi oleh percikan bunga api dari busi. Sedangkan pada mesin torak pengapian kompresi (disebut juga mesin diesel), udara dikompresi ke temperatur di atas temperatur auto-igniton dari bahan bakarnya, kemudian pembakaran dimulai saat bahan bakar yang diinjeksikan kontak dengan udara panas tersebut. Jadi, pada mesin diesel, busi dan karburator digantikan oleh peranan penginjeksi bahan bakar (fuel-injector).

          Siklus diesel ideal menggunakan asumsi berikut: (1) fluida kerja udara-standar yang berprilaku seperti gas ideal; (2) penambahan kalor berlangsung pada proses tekanan konstan yang dimulai saat piston berada pada titik mati atas. Siklusnya sendiri seperti terlihat pada diagram P-v dan T-s di samping. Siklus tersebut terdiri dari empat buah proses berantai yang reversibel secara internal. Proses 1-2 kompresi isentropik, Proses 2-3 penambahan kalor, pada siklus Otto kalor dipindahkan ke fluida kerja pada volume konstan, sedangkan pada siklus diesel, kalor dipindahkan ke fluida kerja pada tekanan konstan. Proses 3-4 ekspansi isentropik, dan Proses 4-1 pelepasan kalor pada volume konstan, di mana kalor keluar dari udara ketika piston berada pada titik mati bawah.
                 Efisiensi siklus Diesel berbeda dengan effisiensi siklus Otto, di mana nth,Otto > nth,Diesel. Ini berlaku untuk siklus yang keduanya beroperasi pada rasio kompresi yang sama. Seperti terlihat pada diagram nth,Diesel-r di samping, semakin tinggi rasio kompresi maka efisiensi akan semakin tinggi pula. Effisiensi siklus Diesel tergantung dari besarnya rasio cut-off, di mana bila rasio cut-off turun, maka efisiensi siklus Diesel akan naik. Efisiensi siklus Diesel dan Otto akan identik bila rasio cut-off sama dengan 1 (rc = 1).
               Mesin Diesel bekerja pada rasio kompresi yang lebih tinggi daripada mesin bensin tetapi lebih efisien. Ini dikarenakan pada mesin Diesel bahan bakar terbakar seluruhnya walaupun bekerja pada putaran mesin yang rendah sekalipun. Karena lebih efisien dan rendahnya pemakaian bahan bakar (irit BBM), mesin Diesel dipilih untuk aplikasi kendaraan berat (mesin yang membutuhkan daya yang besar) seperti mesin kereta api (locomotive), unit pembangkit daya (generator-set), kapal laut pengangkut, truk/trailer berat, dll.

SIKLUS RANKINE

Siklus Rankine adalah siklus daya uap yang digunakan untuk menghitung atau memodelkan proses kerja mesin uap / turbin uap. Siklus ini bekerja dengan fluida kerja air. Semua PLTU (pembangkit listrik tenaga uap) bekerja berdasarkan prinsip kerja siklus Rankine. Siklus Rankine pertama kali dimodelkan oleh: William John Macquorn Rankine, seorang ilmuan Scotlandia dari Universitas Glasglow. Untuk mempelajari siklus Rankine, terlebih dahulu kita harus memahami tentang T-s diagram untuk air. Berikut ini adalah T-s diagram untuk air.
TS diagram
                                                   Gambar 1 diagram T-s untuk air
(sumber : NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell )

T-s diagram adalah diagram yang menggambarkan hubungan antara temperatur (T) dengan entropi (s) fluida pada kondisi tekanan, entalpi, fase dan massa jenis tertentu. Jadi pada diagram T-s terdapat besaran-besaran tekanan, massa jenis, temperatur, entropi, entalpi dan fase fluida.
Sumbu vertikal T-s diagram menyatakan skala temperatur dan sumbu horizontal menyatakan entropi. Terdapat 2 sistem satuan untuk T-s diagram yaitu sistem satuan internasional seperti pada gambar 1 dan sistem satuan Inggris. Menggunakan diagram ini perlu diperhatikan sistem satuan yang digunakan. Selain itu masing-masing jenis fluida mempunyai diagram T-s nya sendiri-sendiri dan berbeda satu dengan lainnya. Misalnya T-s diagram untuk air tidak akan sama dengan T-s diagram untuk freon R12 dan tidak akan sama dengan T-s diagram untuk amoniak.
Selain diagram T-s juga dikenal Mollier diagram atau h-s diagram. Berikut ini adalah h-s diagram untuk air.
hs diagram
Gambar 2 h-s diagram untuk air
(sumber : NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell )
Diagram h-s menggambarkan hubungan antara energi total (entalpi (h)) dengan entropi (s). Sama seperti diagram T-s, untuk setiap fluida memiliki diagram h-s nya sendiri-sendiri. Kedua diagram ini dapat digunakan untuk menghitung kinerja pembangkit listrik tenaga uap dengan menggunakan siklus Rankine.
Bagian-bagian T-s diagram dapat dilihat pada gambar 3 berikut ini.
TS diagram pernjelasan
                                     Gambar 3 bagian-bagian T-s diargam
         Pada T-s diagram terdapat garis lengkung berbentuk kubah yang disebut kubah uap. Puncak kubah uap ini terdapat sebuah titik yang disebut titik kritis. Bila fluida dipanaskan pada tekanan kritis yaitu tekanan pada titik kritis ini, maka pada saat temperatur fluida mencapai temperatur kritisnya, semua molekul fluida akan berubah secara cepat dari fase cair menjadi fase gas (uap) tanpa ada proses penyerapan panas laten (panas penguapan) oleh sebab itu titik ini disebut titik kristis fluida. Untuk air, titik kritis berapa pada tekanan 218 atm (22,064 MPa) dan temperatur 374 oC. Jadi bila air dipanaskan pada tekanan 22,064 Mpa atau 218 atm, maka ketika temperatur air mencapai 374 oC, secara cepat air akan berubah langsung dari fase cair menjadi fase gas tanpa melalui proses penyerapan energi untuk proses penguapan.
         Dari titik kristis ke arah kanan mengikuti garis kubah uap disebut garis uap jenuh. Bila fluida berada pada kondisi tekanan dan temperatur yang sesuai dengan garis ini, maka fluida tersebut berada pada kondisi 100% uap jenuh. Dari titik kristis ke arah kiri mengikuti garis kubah uap, disebut garis cair jenuh. Pada garis ini fluida memiliki fase cair 100%.
         Di dalam kubah uap adalah daerah panas laten yaitu panas penguapan atau panas pengembunan. Pada daerah ini fluida berada dalam kondisi 2 fase yaitu fase cair dan fase gas bercampur menjadi satu. Kadar uap dapat ditentukan dari garis kadar uap.
Daerah di atas kubah uap di sebelah kanan adalah daerah uap panas lanjut ( superheated steam ). Sedangkan daerah di sebelah kiri di luar kubah uap disebut daerah dingin lanjut. Untuk uap jenuh, sifat-sifat termodinamika uap dapat ditentukan hanya dengan mengunakan temperatur atau tekanannya saja, tetapi untuk menentukan sifat-sifat termodinamika uap pada kondisi panas lanjut dan dingin lanjut harus diketahui tekanan dan temperatur uap.
Bila kita memanaskan air dari kondisi cair misalnya pada tekanan konstan 1 atm dan  mulai dari temperatur 18 oC hingga temperatur 230 oC, maka pada diagram T-s dapat digambar sebagai berikut.
TS diagram untuk pemanasan air
Gambar 4 proses pemanasan air dari 18 oC hingga 230 oC pada tekanan 1 atm (101,325 kPa)
Proses pemanasan air dapat digambarkan pada diagram T-s seperti pada gambar 4 di atas. Pada tekanan 1 atm , air dengan temperatur awal 18 oC memiliki entropi 0,28 kJ/kg.K, bila dipanaskan maka temperatur air akan naik mengikuti garis tekanan konstan hingga mencapai titik temperatur didih yaitu untuk tekanan 1 atm titik didih air adalah 99,98 oC. atau entropi air bertambah dari 0,28 kJ/kg.K menjadi 1,3 kJ/kg.K. Entalpi air bertambah dari 82 kJ/kg menjadi 418 kJ/kg. ini adalah energi total (entalpi) yang dibutuhkan untuk memanaskan air dari kondisi cair pada temperatur 18oC menjadi air siap mendidih (berubah fase) pada temperatur 99,98 oC. Pada diagram T-s proses mengikuti garis A-B.
Bila panas terus diberikan, temperatur air tidak akan naik tetapi terjadi perubahan fase air dari fase cair menjadi fase gas. Perubahan fase ini mengikuti garis B-C. Pada proses ini terjadi penyerapan kalor (energi) yang digunakan untuk mengubah fase zat, pada kondisi temperatur konstan. Energi yang diserap ini tidak dapat di ukur dengan mengunakan termometer karena temperatur fluida tidak berubah. Oleh sebab itu, proses ini disebut proses penyerapan panas laten (non sensibel heat). Pada proses ini entropi air bertambah dari 1,3 kJ/kg.K menjadi 7,6 kJ/kg.K. Proses terus berlanjut hingga titik C yaitu titik yang tepat berada pada garis uap jenuh. Pada titik C semua molekul air telah berubah menjadi fase gas. Antara titik B dan titik C adalah kondisi 2 fase yaitu  campuran gas dan cair. Kadar uap dalam campuran ini disebut faktor kebasahan atau sering disingkat dengan huruf X. besar faktor kebasahan dapat dihitung dengan mengunakan rumus :
r1
Keterangan :
X : faktor kebasahan (%) menyatakan persentase uap
hg(t) : entalpi uap pada temperatur fluida tertentu (kJ/kg)
hf : entalpi cair (kJ/kg)
hfg : entalpi perubahan dari cair ke gas (kJ/kg)
sg(t) : entropi uap pada temperatur fluida tertentu (kJ/kg.K)
sf : entropi cair (kJ/kg.K)
sfg : entropi perubahan dari cair ke gas (kJ/kg.K)
misalkan pada proses pemanasan air di atas, kita hendak mengetahui berapa kadar uap pada saat entropi air = 4 kJ/kg.K, maka kadar uap dapat dihitung :
r2
Artinya pada saat entropi fluida mencapai 4 kJ/kg.K kadar uap dalam campuran adalah 44,6 %.
Angka ini dapat dengan mudah ditentukan melalui T-s diagram.
Pada titik C air berada dalam kondisi uap jenuh atau 100 % uap. Bila energi (panas) terus diberikan maka uap jenuh akan berubah menjadi uap panas lanjut. Pada proses pemanasan uap panas lanjut, tekanan dan temperatur fluida akan naik. Tetapi bila proses pemanasan ini dilakukan pada tekanan konstan maka akan mengikuti garis C-D.
Proses yang telah kita bahas ini adalah proses sederhana yang berlangsung pada saat kita memanaskan air. Proses ini hampir sama dengan proses yang terjadi di dalam boiler pada unit pembangkit uap di PLTU.
Siklus Rankine Ideal Sederhana
Siklus Rankine ideal sederhana terdiri dari :
  1. Boiler sebagai alat pembangkit uap
  2. Turbin uap sebagai alat mengubah uap menjadi kerja
  3. Kondensor sebagai alat pengembun uap
  4. Pompa boiler sebagai alat memompa air ke boiler
Skema siklus Rankine ideal sederhana dapat dilihat pada gambar 5 berikut ini.
skema rankine sederhana
Gambar 5 skema siklus Rankine ideal sederhana
Skema pada gambar 5 dapat digambarkan garis kerjanya pada diagram T-s seperti pada gambar 6 berikut ini.
ts rankineGambar 6 diagram T-s untuk siklus Rankine ideal sederhana
Keterangan gambar 6 :
Proses 1 – 2 adalah proses pada tekanan konstan yang berlangsung pada boiler. Pada proses ini kalor masuk ke dalam sistem (Qin).
Proses 2 – 3 adalah proses ekspansi isentropis (adiabatis reversibel) yang berlangsung di dalam turbin uap. Pada proses ini terjadi kerja keluar sistem (Wout)
Proses 3 – 4 adalah proses pada tekanan konstan yang berlangsung di dalam kondensor. Pada proses ini kalor keluar dari sistem (pembuang kalor) (Qout).
Proses 4 – 1 adalah proses penekanan secara isentropis oleh pompa. Pada proses ini kerja masuk ke dalam sistem (Win).
Pada siklus Rankine ideal sederhana. Air dipompa oleh pompa pengisi boiler ke dalam boiler. Pompa yang bertugas untuk memompakan air ke dalam boiler disebut feed water pump. Pompa ini harus dapat menekan air ke boiler dengan tekanan yang cukup tinggi (sesuai dengan tekanan kerja siklus). Secara ideal pompa bekerja menurut proses isentropis (adiabatis reversibel) dan secara aktual pompa bekerja menurut proses adiabatis irreversibel.
Di dalam boiler, air yang bertekanan tinggi dipanaskan hingga menjadi uap panas lanjut, prosesnya adalah sebagai berikut:
  1. Ekonomiser, air pertama-tama masuk ke ekonomiser. Ekonomier berfungsi sebagai pemanas awal. Sesuai namanya alat ini berfungsi untuk meningkatkan efisiensi boiler dengan cara menggunakan panas sisa gas buang untuk memanaskan awal air yang masuk ke boiler.
  2. Evaporator, dari ekonomiser, air masuk ke drum penampung air di evaporator. Di dalam evaporator air dipanaskan melalui pipa-pipa evaporasi hingga berubah menjadi uap. Uap air yang keluar dari evaporator adalah uap jenuh.
  3. Superheater, selanjutnya uap jenuh dari evaporator masuk ke superheater. Superheater adalah alat penukar kalor yang dirancang khusus untuk memanaskan uap jenuh menjadi uap panas lanjut dengan menggunakan gas panas hasil pembakaran. Uap panas lanjut yang keluar dari superheater siap digunakan untuk memutar turbin uap.
Uap panas lanjut dari boiler kemudian dialirkan ke turbin uap melalui pipa – pipa uap. Di dalam turbin uap , uap panas lanjut diekspansikan dan digunakan untuk memutar rotor turbin uap. Proses ekspansi di dalam turbin uap berlangsung melalui beberapa tahap yaitu :
1. Proses ekspansi awal di dalam turbin tekanan tinggi (roda Curtis)
Uap panas lanjut yang bertekanan tinggi diekspansikan di nosel dan kemudian digunakan untuk memutar roda Curtis. Roda Curtis adalah turbin uap jenis turbin implus. Pada roda Curtis terjadi penurunan tekanan yang signifikan.
2. Proses ekspansi pada turbin tingkat menengah.
Turbin tingkat menengah menggunakan turbin jenis reaksi dan tersusun atas beberapa tingkat turbin.
3. Proses ekspansi tingkat akhir.
Pada tingkat akhir ini uap terus diekspansikan hingga tekanan sangat rendah (biasanya dibawah tekanan atmosfir ) dengan bantuan kondensor.
Putaran poros yang dihasilkan dari proses ekspansi uap panas lanjut di dalam turbin digunakan untuk memutar beban. Beban dapat berupa generator listrik seperti di PLTU atau propeler (baling-baling) untuk menggerak kapal.
Uap tekanan rendah dari turbin uap mengalir ke kondensor. Di dalam kondensor, uap didinginkan dengan media pendingin air hingga berubah fase menjadi air. Kemudian air ditampung di dalam tangki dan dipisahkan dari gas-gas yang tersisa dan siap untuk dipompa ke dalam boiler oleh pompa pengisi boiler. Proses ini terus berlanjut dan berulang membentuk sebuah siklus yang disebut siklus Rankine.
Pada siklus Rankine ideal. Ke 4 alat dianggap bekerja pada kondisi Steady flow. Sehingga persamaan energi untuk kondisi steady flow dapat ditulis :
r3
Beberapa proses yang berlangsung pada masing-masing alat adalah :
Kerja pompa :
r4
Dimana ν adalah volume spesifik yang besarnya r10
Kalor masuk ke boiler :
r5
Kerja yang dihasilkan turbin uap :
r6
Kalor yang dibuang oleh kondensor :
r7
Efisiensi thermal siklus Rankine ideal sederhana dapat dihitung :
r8 
r9 
Dimana  : Untuk menghitung kinerja siklus Rankine, diperlukan tabel sifat-sifat air dan uap air. Berikut ini tabel sifat-sifat air dan uap air.
Untuk uap jenuh variabel tetap temperatur air :
tabel uap 1tabel uap 2
Untuk uap jenuh dengan variabel tetap tekanan
tabel uap 3tabel uap 4Untuk uap panas lanjut
tabel uap panas lanjut 1 tabel uap panas lanjut 2 tabel uap panas lanjut 3 tabel uap panas lanjut 4data lengkap tentang sifat-sifat termodinamika untuk beberapa fluida dapat didownload pada link berikut ini : http://www.4shared.com/web/preview/doc/FKLvf9Fqba. atau http://www.2shared.com/document/oNTrxxp1/appdxs1_2.html
Contoh soal
Sebuah siklus Rankine sederhana ideal bekerja pada temperatur 400 oC dan tekanan 80 bar. Tekanan kondensor 0,1 bar. Aliran massa uap yang masuk ke turbin 100 kg/s. Hitunglah kerja turbin, kerja pompa, kalor masuk, kalor keluar dan efisiensi siklus. daya yang dihasilkan turbin dan daya netto siklus.
Jawab
Pertama-tama gambarkan skema siklus Rankine sederhana dan lengkapi dengan data-data yang ada di dalam soal
contoh soal 
Gambar  7 data dari soal
Ditanya : kerja turbin (Wt); Kerja pompa (Wp), kalor masuk (Qin­), kalor keluar (Qout), efisiensi termodinamika (ηth), daya turbin (Pt) dan daya netto siklus (Pnett).
Dari tabel sifat-sifat uap panas lanjut  di dapat :
Entalpi uap masuk ke turbin : h1 = 3139,4 kJ/kg
Entropi uap masuk ke turbin : s1 = 6,3658 kJ/kg.K
Entropi uap keluar turbin sama dengan entropi uap masul turbin (proses ideal atau isentropis) sehingga s1  = s2  = 6,3658 kJ/kg.K
Dari tabel uap jenuh, pada tekanan 0,1 bar (10 kPa) didapat :
Entalpi fase uap (hg2) = 2583,9 kJ/kg
Entalpi fase cair (hf2) = 191,81 kJ/kg
Entalpi perubahan fase (hfg2) = 2392,1 kj/kg
Entropi fase uap (sg1) = 8,1488 kJ/kg.K
Entropi fase cair (sf2) = 0,6492 kJ/kg.K
Entropi perubahan fase (sfg2) = 7,4996 kJ/kg.K
Fraksi (kadar) uap (X) dapat dihitung :
ra 
Artinya kadar uap yang keluar dari turbin menuju kondensor adalah 76,22 % atau fluida yang keluar dari turbin 76,22 % uap dan 23.78 % cair. Bagian yang cair ini tidak perlu lagi diembunkan, tetapi 76,22 % uap ini yang harus dibuang kalornya supaya fasenya berubah menjadi cair. Maka energi total yang terkandung di dalam 76,22% uap dapat dihitung :
rb 
Maka kerja turbin dapat dihitung yaitu :
rc 
Daya turbin adalah :
rdKalor yang dibuang oleh kondensor :
re
h2 adalah entalpi uap yang masuk ke kondensor = 2015,07 kJ/kg
h3 adalah entalpi air yang keluar dari kondensor = 191,81 kJ/kg
maka kalor yang dibuang oleh kondensor adalah :
rfDaya kondensor yang dibutuhkan untuk membuang kalor tersebut adalah :
rgKerja pompa dapat dihitung dengan rumus :
rh
ν = volume jenis air pada tekanan 0,1 bar = 0,00101 m3/kg
p4 = tekanan air keluar pompa = tekanan boiler (proses ideal tidak ada rugi-rugi tekanan) maka p4 = p1 = 400 bar = 40 Mpa.
p3 = tekanan air masuk pompa = tekanan air keluar kondensor, untuk proses ideal tidak ada rugi-rugi tekanan sehingga p3 = 0,1 bar = 10 kPa
maka kerja pompa :
rjBila aliran massa air yang dipompa 100 kg/s maka daya yang diperlukan oleh pompa adalah:
rkDaya netto siklus :
rlKalor yang masuk ke sistem (qin­) dapat dihitung :
rm
h1 = entalpi uap panas lanjut keluar dari boiler = 3139,4 kJ/kg
h4 = entalpi air keluar pompa yang besarnya = entalpi air masuk pompa + kerja pompa, maka h4 = 191,81 + 40,3899 = 232,1999 kJ/kg
maka kalor yang masuk ke sistem adalah :
rn
Daya yang dihasilkan Boiler : PB = 2900,2 kJ/kg x 100 kg/s = 290.020 kW = 290,02 MW
Efisiensi termodinamika siklus adalah :
ro
Dari hasil perhitungan dapat dilihat hanya 37,37 % dari daya yang diberikan ke dalam boiler yang dapat diubah menjadi energi mekanis, sisanya hilang atau dibuang ke alam melalui kondensor dan ada sebagian kecil yang digunakan untuk mengerakan pompa.

Source : djukarna.wordpress.com

SIKLUS OTTO

Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto.
Secara thermodinamika, siklus ini memiliki 4 buah proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:
otto2
Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik
Beberapa rumus yang digunakan untuk menganalisa sebuah siklus Otto adalah sebagai berikut :
1. Proses Kompresi Adiabatis
T2/T1 = r^(k-1);  p2/p1 = r^k

2. Proses Pembakaran Isokhorik
T3 = T2 + (f x Q / Cv) ;   p3 = p2 ( T3 / T2)

3. Proses Ekspansi / Langkah Kerja
T4/T3 = r^(1-k) ;   p4/p3 = r^(-k)

4. Kerja Siklus
W = Cv [(T3 – T2) – (T4 – T1)] 

5. Tekanan Efektif Rata-rata (Mean Effective Pressure)
pme = W / (V1 – V2)

6. Daya Indikasi Motor
Pe = pme . n . i . (V1-V2) . z

Dimana parameter – parameternya adalah :
p = Tekanan gas (Kg/m^3)

T = Temperatur gas (K; Kelvin)

V = Volume gas (m^3)

r = Rasio kompresi (V1 – V2)

Cv = Panas jenis gas pada volume tetap ( kj/kg K)

k = Rasio panas jenis gas (Cp/Cv)

f = Rasio bahan bakar / udara

Q = Nilai panas bahan bakar (kj/kg)

W = Kerja (Joule)

n = Putaran mesin per detik (rps)

i = Index pengali;  i=1 untuk 2 tak dan i=0.5 untuk 4 tak

z = Jumlah silinder

P = Daya ( Watt )

POMPA KALOR (HEAT PUMP)

Heat pump atau pompa kalor adalah suatu sistem yang dapat menyerap kalor dari suatu tempat kemudian membuangnya di tempat lain. Pompa kalor dapat digunakan sebagai pendingin jika memanfaatkan sisi penyerapan kalor , inilah yang disebut dengan sistem refrigerasi.  Sebaliknya pompa kalor juga dapat digunakan sebagai pemanas jika memanfaatkan sisi pembuangan kalornya. Contoh sederhana pompa kalor adalah air conditioner. Air conditioner menyerap kalor yang ada diruangan kemudian membuangnya ke luar ruangan.


Untuk memahami prinsip pompa kalor maka analogi pompa air dapat digunakan karena secara prinsip keduanya tidak berbeda.  Air secara alami akan mengalir dari tempat yang tinggi ke tempat yang rendah. Untuk mengalirkan air dari tempat yang rendah ke tempat yang tinggi dibutuhkan suatu alat (pompa)  dan usaha/kerja/energi dari luar (mekanik). Dengan menggunakan pompa maka air yang ada di tempat yang lebih dapat dihisap dan dikeluarkan di tempat yang lebih tinggi.

Pada kalor pun terjadi hal yang sama. Kalor secara alami mengalir/berpindah dari temperatur yang tinggi ke temperatur yang rendah. Tinggi atau rendahnya temperatur merupakan salah satu indikasi besarnya energi kalor yang dimiliki suatu zat. Semakin tinggi temperatur maka semakin tinggi energi kalornya. Untuk memindahkan kalor dari tempat yang temperaturnya lebih rendah maka dibutuhkan sistem pompa kalor. Seperti halnya pompa air, untuk menyerap kalor dan membuang kalor dibutuhkan kerja/usaha/energi dari luar. Biasanya proses pompa kalor digambarkan seperti dibawah ini.
Dimana Ts adalah suhu lingkungan, Tc adalah temperatur pada sisi penyerapan kalor, Th adalah temperatur pada sisi pembuangan kalor, W adalah kerja dari luar, Qc adalah kalor yang terserap dan Qh adalah kalor yang dibuang.
Pada saat tidak ada W yang bekerja maka temperatur Ts, Tc, dan Th adalah sama (Ts=Th=Tc) dan tidak ada proses perpindahan kalor diantaranya. Begitu ada kerja W dijalankan maka Tmenjadi lebih rendah dibandingkan dengan Ts. Oleh karena itu energi kalor yang berada di sekitarnya terserap oleh sistem ini. Kalor yang terserap ini dibuang ke sisi Qh sehingga temperatur Th menjadi lebih besar dari Ts. Pada keadaan ini maka T< Ts < Th. Hubungan antara kalor yang diserap dan dibuang mengikuti persamaan:
Untuk menunjukkan sebarapa baik performa dari suatu pompa kalor, maka dikenal dengan istilah COP (Coefficient of Performance) atau dalam bahasa Indonesia disebut dengan koefisien kinerja. COP ini merupakan perbandingan antara output yang digunakan dengan input yang diberikan. Pada pompa kalor, input adalah kerja dan output dapat merupakan penyerapan kalor atau pembuangan kalor. Jika pompa kalor digunakan sebagai pendingin (Refrigerasi) maka output adalah penyerapan kalor. Sebaliknya, jika pompa kalor digunakan sebagai pemanas (heater) maka outputnya adalah pembuangan kalor. Oleh karena itu COP diekspresikan dengan:
-          Untuk pendingin:

 
oleh karena
 

maka:


- Untuk Pemanas
atau

Dua jenis sistem pompa kalor yang sudah di komersilkan secara luas adalah sistem refrigerasi kompresi uap (SRKU) dan thermoelectric. SRKU merupakan sistem yang paling banyak ditemui di dalam kehidupan sehari-hari, sepeti Air conditioner (AC) dan lemari es. Keunggulan dari SRKU adalah COPnya yang sangat tinggi. Hal inilah yang menyebabkan teknologi ini belum bisa digantikan oleh teknolgi lain. Walaupun demikian, SRKU membutuhkan banyak komponen dan kurang bisa diterapkan di tempat yang kecil.
Jenis pompa kalor thermoelectric sering dijumpai sebagai pendingin elektronik seperti prosesor. Keunggulan teknologi ini adalah ukurannya yang kecil , sangat mudah diterapkan dan cukup dicatu dengan listrik searah (DC). Namun COPnya masih sangat kecil dibandingkan dengan SRKU.
Sebenarnya ada beberapa jenis lain yang dapat digunakan sebagai sistem pompa kalor namun sulit untuk dijumpai dalam kehidupan sehari-hari, yaitu: sistem refrigerasi absorpsi, thermoacoustic, thermomagnetic, dan tabung vortex.

Keyword: Heat pump, pompa kalor, refrigerasi, pendingin, refrigerasi kompresi uap, thermoelectric

Oleh: Tri Ayodha Ajiwiguna
 

Sample text

Sample Text

Sample Text

 
Blogger Templates